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Abbreviated summary

This study investigates EEG microstate dynamics in patients with disorders of

consciousness (DoC) to understand residual brain activity and network reorganization.

Entropy production, in addition to static markers, differs between patients and healthy

controls, whereas the rest of the dynamic markers show differences across patient

groups.

Abstract

As a response to the environment and internal signals, brain networks reorganize on a

sub-second scale. To capture this reorganization in patients with disorders of

consciousness and understand their residual brain activity, we investigated the

dynamics of electroencephalography (EEG) microstates. We analyze EEG microstate

markers to quantify the periods of semi-stable topographies and the large-scale

cortical networks they may reflect. To achieve this, EEG samples are clustered into

four groups and then fit back into each time sample. We then obtain a time series of

maps with different frequencies of occurrence and duration. One such occurrence of a

map with a given duration is called a microstate. The goal of this work is to study the

dynamics of these topographical patterns across patients with disorders of

consciousness. Using the microstate time series, we calculate static and dynamic

markers. In contrast to the static, the dynamic metrics depend on the specific temporal

sequences of the maps. The static measure Ratio of Total Time covered (RTT) shows

differences between healthy controls and patients, however, no differences were

observed between the groups of patients. In contrast, some dynamic markers capture

inter-patient group differences. The dynamic markers we investigated are Mean

Microstate Durations (MMD), Microstate Duration Variances (MDV), Microstate

Transition Matrices (MTM), and Entropy Production (EP). The MMD and MDV

decrease with the state of consciousness, whereas the MTM non-diagonal transitions

and EP increase. In other words, DoC patients have slower and closer to equilibrium

(time-reversible) brain dynamics. In conclusion, static and dynamic EEG microstate

metrics differ across consciousness levels, with the latter capturing the subtitler

differences between groups of patients with disorders of consciousness.
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Abbreviations

Disorders of Consciousness (DoC)

Electroencephalography (EEG)

Ratio of Total Time covered (RTT)

Mean Microstate Durations (MMD)

Microstate Duration Variances (MDV)

Microstate Transition Matrices (MTM)

Entropy Production (EP)

Unresponsive Wakefulness Syndrome (UWS)

Vegetative State (VS)

Minimally Conscious State (MCS)

Emergent Minimally Conscious State (EMCS)

Global Field Power (GFP)

Global Explained Variance (GEV)

Global Map Dissimilarity (GMD)

Healthy Controls (HC)

Functional Magnetic Resonance Imaging (fMRI)

Transition Matrices (TM)

Local-Global (LG) Paradigm
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Introduction

Consciousness is hypothesized to arise out of complex network interactions on a

sub-second scale 1,2. Various theoretical models build on the idea that conscious states

do not rely on a single cortical area or network but require brain-wide

communication1. In patients with Disorders of Consciousness, the network

coordination is altered 2, and thus the characterization of these pathological network

dynamics can aid diagnostic and prognostic analyses. Addressing this challenge,

Demertzi and colleagues3, have demonstrated that different recurrent patterns of brain

activity, obtained from resting-state fMRI, are directly associated with disorders of

consciousness (DoC) clinical categories. Particularly, one of the phase-coherence

patterns more present in higher global states of consciousness is characterized by

long-range functional communication between brain areas3.

The exploration of resting-state brain activity relies on the theory that the resting-state

networks reflect an inner state of exploration which optimizes the system for input and

thus it influences perception and cognitive processing 4. However, to respond to

changes in the environment, networks must reorganize on a sub-second time scale.

Unlike fMRI, the EEG temporal resolution can capture fast fluctuations. Using

high-density EEG while tracing the ongoing brain activity of patients with a disorder

of consciousness (DoC), we employ a method known as EEG microstates as a proxy

to track latent brain state changes on a sub-second scale.

EEG microstates are defined as successive short periods (around 50-100 ms) during

which the configuration of the scalp potential field remains semi-stable5,6. As reported

in the literature6–11, four prototypic maps can be reliably identified across healthy

participants. These four maps are commonly denoted with letters and have distinct

topographical descriptions: map A has a left-right orientation, map B has a right-left

orientation, C has an anterior-posterior orientation, and D has a frontocentral

maximum. The temporal characteristics of microstates are proposed to represent the

basic building blocks of spontaneous mental processes, as well that the quality of

mentation is determined by their occurrence and temporal dynamics6. Furthermore,

EEG microstates have been investigated in neurological and clinical conditions such

as narcolepsy, Alzheimer’s, disorders of consciousness, and schizophrenia6,9,12. The
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dominance of certain maps in time has also been associated with the activation of an

underlying resting state network13.

To assess the dynamics of the microstates in patients with a DoC compared to healthy

controls, we used the EEG recordings of the auditory local-global paradigm14. The

DoC clinical diagnostic categories with which we work in this paper are the

Unresponsive Wakefulness Syndrome (UWS) (also known as the Vegetative State -

VS), the Minimally Conscious State (MCS), and the Emergent Minimally Conscious

State (EMCS)15–17. Recent work has also investigated the use of EEG microstates in

the classification of DoC patients12,18,19. They show that some microstate markers can

aid the DoC classification, as well as the patients’ outcome prediction. However,

neither study investigates the dynamic microstate markers in detail.

The first working hypothesis of this study is focused on the investigation of the

microstate dynamics across DoC classes and aims to test whether similar to the loss of

consciousness in sleep there is a lengthening of the microstates across DoC patients.

In other words, UWS patients will have significantly longer microstate durations than

MCS, EMCS, and HC. Furthermore, we hypothesized that the variance of microstate

durations would be highest for HC and lowest for UWS. Another approach to assess

the change of dynamics is the concept of time-reversibility20, in which we assess

whether the discrete state transitions are symmetrical when going from brain state A

to brain state B and reversed. Recent work has shown that entropy production can be

assessed from resting-state and task data and can be used to differentiate between

global states of consciousness20,21. The microstates discretization of the whole-brain

activity, allows us to test a measure of entropy production. We hypothesized that the

transition probabilities matrices of the healthy controls would show a lack of

symmetry and that the transition entropy would scale from low to high for patients in

UWS to the healthy controls.
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Methods

Participants

The study involved two groups of participants: a healthy group used as a control for

the analyses (n=37, mean age 27.6 +/- 5.8, 8 female), and a group of patients with

disorders of consciousness. The healthy participants took part in the study voluntarily

as approved by the ethical committees at the Paris Brain Institute (ICM), Salpetriere,

Sorbonne University (Inserm CPP C13-632 41) and by the Comité de Protection des

Personnes Ile-de-France. The patients’ recordings were acquired as part of an

operational diagnostic procedure at the Neurology Department at the Salpetriere

Hospital or as part of other studies aiming for the development of diagnostic and

prognostic analyses22,23. According to the behavioral assessment by a neurologist

using the CRS-R, the patients were classified to be in Unconscious Wakefulness

Syndrome (UWS) otherwise known as Vegetative State (VS) (n=70, mean age 46.4

+/- 18.1, 22 female), Minimally Conscious State (MCS) (n=70, mean age 43.7 +/-

18.6, 28 female), Emergent MCS (EMCS) (n=14, mean age 38.9 +/- 23, 4 female).

Experimental design and data characteristics

The EEG data were recorded with a 256-electrode geodesic sensor net (EGI®,

Oregon, USA) referenced to the vertex. The sampling rate was set to 250 Hz. For the

goal of this study, we used recordings during a Local-Global (LG) Paradigm14.

Specifically, we used the period of the paradigm during which four identical sounds

are presented. We refer to this period as a pseudo-resting state as it elicits a

non-specific response22.

Data pre-processing

Python 3.7-based open-source software libraries such as the MNE-Python24 and the

NICE-tools and extensions22, were used for the EEG signal processing. The recordings

were downsampled to 250 Hz, band-pass filtered (0.5 - 45 Hz) then segmented in

epochs ranging from -200 ms to +1344 ms relative to the first sound onset. The data

was epoched to enable better artifact cleaning where single strongly artefacted epochs
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were removed. Similar approaches have been taken in other studies25,26. Electrodes

with voltages exceeding 100 µV in more than 50% of the epochs were removed.

Moreover, voltage variance was computed across all correct electrodes. Electrodes

with a voltage variance Z-score higher than 4 were also removed. This process was

repeated four times. Bad electrodes were interpolated using a spline method. Epochs

were labeled as bad and discarded when the voltage exceeded 100 µV in more than

10% of electrodes. The remaining stimulus-locked epochs were re-referenced to an

average reference. In addition, the channels along the edges of the head were removed

systematically from all the recordings. This was done due to the electrodes containing

face muscle artifacts or not having sufficiently strong signals. In the cases where more

of the 50% of the epochs were marked as bad, the subject was then taken out of the

analysis. They are not included in the patient summaries above.

Microstates Analysis

EEG microstates have been studied for more than 30 years5,6. Nevertheless, there are

still ongoing debates on the subtleties regarding their derivation and analysis. In this

study, a combination of the procedures most widely accepted in the scientific

community was followed6–8,10–12,27–29. We used a modified version of the MNE

microstates sub-package as well as metrics introduced initially in other studies10,11.

Microstates clustering and segmentation methods

The Global Field Power (GFP) of the signal is calculated which quantifies the

variance of voltage potentials across all of the electrodes30. As a measure of the

strength of the scalp potential at a given time point, the GFP is based on the potential

differences between all electrodes. The output is a vector of scalar values per sample.

In the past, high GFP has been associated with stable EEG topographies7,27. The maps

were traditionally seen as discrete, meaning they do not gradually morph into one

another or overlap in time, but rather a single map is dominant and then abruptly

transitions to another map5. However, this has been disputed in recent studies31,32. To

obtain the time series of microstates, the EEG epochs from a single participant were

stacked going from a 3D array (epochs, channels, samples) to a 2D array (channels,

samples). Next, all the data samples are z-scored by taking into account the mean and
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the standard deviation of the whole recording for each channel. For our goal, we

extracted the EEG potential fields at the GFP maxima (the minimal peak distance was

set to 2 samples), also referred to as maps (Figure 1). The topographies were filtered

according to two criteria. The first filtering was done to remove the maps at GFP

peaks that were larger than one standard deviation above the GFP mean (as suggested

in 28). Secondly, the maps that belong to a GFP local maxima but within the lowest

15% of the GFP signal were removed. As shown by Mishra et al.31, in this GFP range,

the k-means clustered maps are equidistant from the EEG potential fields at the given

sample. The remaining GFP peaks were subsampled randomly to less than 100.000

maps per recording. This was done to optimize the computations. The remaining maps

were submitted to a modified k-means clustering algorithm as described by

Pascual-Marqui et al.30. The modified k-means clustering algorithm and the

segmentation functions were available as a sub-package of MNE Python24. The

specificity of this algorithm is that it is polarity-invariant, meaning that topographies

with opposite polarity are assigned to the same class30. Not all clustering algorithms

are polarity invariant, one such example is classical k-means clustering. In this thesis,

the number of clusters (k) was set to four to compare the results to existing literature,

as in most studies this is the chosen number of clusters6–9,12.

To assess to what extent the maps explain the data, a measure called Global Explained

Variance (GEV) is used (Equation 1). The first step is to fit the map closest to the

EEG field potential at the given time point. This is done for each sample of the EEG

signal and the output 1D vector (map per sample) is denoted as a segmentation. In

other words, the maps are back-fitted to new EEG samples based on topographical

similarity. The segmentation gives the information on which map is closest to the

topography sample by sample. The topographical similarity is calculated based on a

distance measure called Global Map Dissimilarity (GMD)33. This measure looks at

how similar the topography maps are and is invariant to the strength of the signal. In

other words, two maps with similar topographies, but different EEG voltage strengths

will result in a low GMD distance33.

GEV is a measure of the similarity of each EEG sample to the microstate map it has

been assigned to. It is calculated by the multiplication of the squared correlation

between the EEG sample and the assigned map with the sample’s fraction of the total

squared GFP33. The k-means clustering is randomly initiated 100 times, and at each
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iteration, the GEV and the corresponding maps are saved. This is done to maximize

the GEV by selecting the maps from the iteration with the highest GEV value.

For a group-level analysis, we do a three-level clustering (Supplementary Figure 3).

First, we clustered into 10 maps on a subject level. Next, because of the unbalanced

dataset (eg. 70 MCS subjects versus 14 EMCS), we perform bootstrapping. In other

words, we sample with repetition the groups. The sample size is equal to the smallest

group size, in our case it is 14 as we have only 14 subjects with EMCS. In each

bootstrap iteration, we cluster the subject-level maps into four maps. We repeat this

2000 times. We obtain an array of 4 x 2000 maps, which are clustered into 4 maps.

The final four maps are the ones we use to fit back to the subject time series to obtain

the per-subject segmentation. When a given map is dominant over a few continuous

(uninterrupted) samples, this is what we call a microstate. Using this time series (the

segmentation) we calculate the microstates markers. A similar but simpler double

clustering procedure has been previously used26,29.

Another method used to deal with EEG noise is to smoothen the segmentation. Due to

various short-lived artifacts of a few samples, the back-fitting of the maps to the EEG

can be affected. For this reason, the segmentation is smoothened using a window

smoothing algorithm explained in Titterington et al.34 (introduced in Pascual-Marqui

et al.30 and implemented in the MatLab EEG microstates toolbox by Poulsen et al.28).

Microstates markers

For the goal of this study, we investigated markers calculated from the microstate

segmentation6,7,10. We divided the microstate markers into static and dynamic. The

static metrics are time-independent, meaning they are not influenced by the specific

temporal sequence of the microstates. They are:

● Ratio of Total Time covered (RTT), sometimes referred to as segment count

density, or empirical symbol distribution10,11. It denotes the fraction of the total

time for which a certain microstate is dominant. In other words, it indicates the

percentage of time covered by a given microstate map over the duration of all

the epochs.
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● Global Explained Variance (GEV) per map reflects the ratio of variance

explained by each of the k-group maps - calculated for all the epochs of one

participant. This reflects the goodness of fit of the microstates to describe the

map sequence of that subject. The markers GEV and RTT depend on one

another. Meaning that the bigger the RTT coverage is, the more variance the

given map is likely to explain within the data. Contrastly, the GEVs of the

maps reflect the topographical similarity to each data point (how well they

correlate), whereas the RTT accounts for the discrete temporal presence

without reflecting the correlation between the dominant map and the given

sample9.

The dynamic markers which depend on the temporal sequence of map alterations are:

● Mean Microstate Duration (MMD) which represents the mean of the

microstate durations in milliseconds per participant. This marker gives

information on the stability of the microstates and can allow for the

comparison of whether microstate transitions occur faster or slower in a given

group of participants.

● Microstate Duration Variance (MDV) represents the variance of the microstate

durations per participant. It reflects the microstates' duration variability, and

their temporal consistency or lack thereof. In other words, it shows whether

the durations of the microstates within a subject are consistently long, or

consistently short, or if they have a variable length.

● Microstates Transition Matrix (MTM) describes the transition between the

k-microstates. It denotes the ratio of the number of transitions from one

microstate map to another and is calculated from the transitions present in all

the epochs from a single participant’s EEG recording. The transition

probabilities quantify how frequently a given map is followed by the other

maps. It characterizes the flow of microstates in terms of particular sequences

of transitions and allows one to determine if this sequence has a particular

dynamical order.

● Entropy Production (EP) quantifies the symmetry of the transition

probabilities. In other words, it is a measure of broken detailed balance (where
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the transition probability of going from map i to map j Pij is different than the

transition probability going from map j to map i Pji and this difference leads to

EP increase). This analysis has been implemented in previous fMRI studies in

resting state and task paradigms20,21.

(Equation 1)𝐸𝑃 =
𝑖𝑗
∑ 𝑃

𝑖𝑗
𝑙𝑜𝑔

𝑃
𝑖𝑗

𝑃
𝑗𝑖

Statistical analyses

Due to the microstate marker distributions per group being skewed, we performed

non-parametric statistical tests. To investigate the differences per pair of groups, the

Mann-Whitney U test was used for comparing independent data samples. This test is a

nonparametric version of the independent samples t-test. Its null hypothesis stipulates

that the two groups come from the same population. To control for the type 1 error

rate, the Bonferroni corrected p-values were analyzed. The significance level, alpha, is

set to 0.05 for all statistical tests.

Results

Our primary focus was on the validation of the method by comparing the EEG

microstate topographies of patients with disorders of consciousness to those of healthy

controls from this study and previous ones. Secondly, we investigate the static

microstate markers, specifically the Ratio of Total Time covered (RTT) and Global

Explained Variance (GEV). The third part focuses on dynamic microstate metrics,

specifically the mean microstate duration (MMD) and microstate duration variance

(MDV), transition matrices (TM), and entropy production. The findings highlight

microstate differences between healthy controls, patients, and across patient groups.

EEG Microstates in Patients with Disorders of Consciousness

The EEG microstates depict generalized topographical alterations (Figure 1) whose

occurrence and stability are associated with the same or close-by neural sources. The

method involves the clustering and segmentation of EEG microstates, where the EEG
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data is divided into epochs, the Global Field Potential (GFP) peaks are extracted and

filtered, and a modified k-means clustering algorithm is applied to identify

topographies representing microstate maps, which are then fitted back to the EEG

signal to obtain the sequence of dominant maps and their durations. The first question

when studying these topographies in patients with disorders of consciousness is

whether they will be different from the ones of the healthy controls observed both in

this study and previous ones. The final maps include the three-level clustering

(Supplementary Figure 3) shown in Figure 1. E, have the same topographies as the

ones reported in the literature6–11,19. Additionally, the Global Explained Variance

(GEV) does not differ between the patient groups and healthy controls (Figure 2. B).

Figure 1 Illustration of the microstates clustering and segmentation algorithms.

(A) The participants' EEG is divided into epochs (a sample of epochs and channels is

shown). (B) The Global Field Potential (GFP) is calculated by taking the EEG signals

from all the electrodes at each time point. (C) The GFP peaks are extracted and

filtered according to two criteria (explained in the Materials and Methods). The

topographies (EEG potentials from all the electrodes) are extracted at each GFP peak.

(D) The extracted topographies at the GFP peaks are used as input to a modified

k-means clustering algorithm. (E) The output of the clustering gives a k-number of

topographies that explain most of the variance in the data. Each topography or
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microstate map is denoted with a different color - shown in the square below the

maps. (F) The maps are fitted back to the EEG channel signal to obtain the sequence

of dominant maps along with the duration of the recording, this is known as

segmentation. Abbreviations: Global Field Power (GFP), seconds (sec), Vegetative

State (VS), Unresponsive Wakefulness Syndrome (UWS), Minimally Conscious State

(MCS), Emergent Minimally Conscious State (EMCS).

Static Microstate Markers

Two measures to assess the static properties of the microstates are the Ratio of Total

Time covered (RTT) and Global Explained Variance (GEV) (see Methods). To

summarize the occupancy ratios (RTT) of each map, we can calculate their entropy.

When looking into the entropy of the Ratio of Total Time covered (RTT) or the ratio

of the dominance of one map, in Figure 2 we observe differences between the healthy

controls and all the patient groups, but no differences among the patients’ groups

(between UWS and HC U(70,37)=1909, p=0.00018; between MCS and HC U(70,

37)=2077, p<0.0001; between EMCS and HC U(14, 37)=425, p=0.0014) The healthy

participants, on a group level, show a decrease in entropy, meaning that the

occurrences of the four maps are more predictable. Whereas the patient groups have

higher entropies showing lower predictability of transitions (or in other words close to

uniform probabilities of 25% for the 4 maps). This indicates that some maps,

especially in the healthy controls, dominate. To understand this trend we analyzed the

RTTs per map and per group (Supplementary Figure 1). We can observe differences in

the distributions between HC and the patient groups for maps B and C (map B: MCS

& HC U(70,37)=699, p=0.001; map C: UWS & HC U(70,37)=726, p=0.002; MCS &

HC U(70,37)=396, p<0.0001; EMCS & HC U(14,37)=82, p=0.002). Map B is less

present on average in the HC group, and vice versa for map C. Map D on the other

hand shows a bimodal distribution in the HC, where for roughly half of the

participants the RTT is as expected (25%) or higher, and for the other half the RTT is

much lower. We only see a similar trend between GEV and RTT for map C

(Supplementary Figure 1). These differences in RTT in maps B and C for the healthy

controls are what contribute to the lower entropy values.
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In Figure 2. B the summed GEV of all four maps per participant group is shown.

Following Mann-Whitney U two-sided tests, no significant differences between the

pairs of groups were observed (p>0.05, Bonferroni corrected). Thus, the ability of the

four clustered maps to capture the variance of the true sample-to-sample topographies

does not significantly differ between healthy controls and disorders of consciousness

patients. In other words, maps do not bias the dynamic markers towards one of the

included groups. When we analyze the GEV separately for each map (Supplementary

Figure 1. B), we only observe differences between some of the patient groups and the

healthy controls in maps B and C (map B: UWS & MCS U(70,70)=1733, p=0.034;

MCS & HC U(70,37)=754, p=0.005; map C: UWS & HC U(70,37)=771, p=0.007;

MCS & HC U(70,37)=531, p<0.0001; EMCS & HC U(14,37)=104, p=0.013). The

inter-group differences reflect the same trends in GEV and RTT which is expected

given they revolve around the closeness of the attributed map and the original

topography (see Methods). In the literature, similar GEV values are reported7,8,29,

roughly around 10-15% per microstate map, with higher values, above 20%, for the

anterior-posterior microstate C, which is something that we also observe.

Figure 2 The static microstate metrics Entropy of the Ratio of Total Time (RTT)

covered differs between patients with Disorders of Consciousness and Healthy

Controls. (A) Entropy of the Ratio of Total Time (RTT) covered by the microstates

for all three patient groups and the healthy controls. (B) Summed Global Explained

Variance (GEV) for all microstates together, plotted separately for all three patient

groups and the healthy controls. According to the Mann-Whitney U tests, the RTT

values between some of the groups are statistically different. All values are Bonferroni
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corrected. In the figures, one dot represents one subject. The stars represent

significance following Mann Whitney U tests between distributions (* p<0.05; **

p<0.01; *** p<0.001; **** p<0.0001). Abbreviations: Ratio of Total Time covered

(RTT), Global Explained Variance (GEV), Unresponsive Wakefulness Syndrome

(UWS), Minimally Conscious State (MCS), Emergent Minimally Conscious State

(EMCS), Healthy Controls (HC).

Dynamic Microstate Markers

The dynamic microstate markers show higher inter-group differences (Figure 3). Both

the Mean Microstate Durations (MMD) and the Microstate Duration Variances

(MDV), on a group level, show a decreasing trend. In other words, going from the

patient group UWS to healthy controls, we see a decrease in the microstate durations.

Similarly, there is a decrease in the variance of durations which reflects an increased

consistency across microstate durations going from UWS to HC. We test this decrease

using Mann-Whitney U tests, two-sided and Bonferroni corrected. The differences are

significant between most groups for the MMD: UWS and HC U(70,37)=2422,

p<0.0001, MCS and HC U(70, 37)=2220, p<0.0001, EMCS and HC U(14, 37)=405,

p=0.013; UWS and MCS U(70,70)=3264, p=0.0042; UWS and EMCS U(70,14)=746,

p=0.013. For the MDV we observe similar intergroup differences: UWS and HC

U(70,37)=2384, p<0.0001, MCS and HC U(70, 37)=2076, p<0.0001; EMCS and HC

U(14, 37)=399, p=0.019; UWS and MCS U(70,70)=3303, p=0.002; UWS and EMCS

U(70,14)=742, p=0.015. Regarding the MCS and EMCS patient group statistics, a

Mann-Whitney U two-sided test shows no significant differences (p>0.05, Bonferroni

corrected, U(70,14)=608, p=0.95 for MMD and U(70,14)=565, p=1 for MDV).
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Figure 3 Dynamic microstate markers: MMD and MDV differ between

Disorders of Consciousness groups and Healthy Controls. (A) Mean Microstate

Durations (MMD) for all microstates for all three patient groups and the healthy

controls. Statistical differences are found between the healthy controls (HC) and the

three patient groups. (B) Same as (A) but for the Microstate Duration Variances

(MDV). The statistic and the p-value of the Mann-Whitney U two-sided tests for the

MMD and the MDV are given in the Results. In all the panels, one dot represents one

subject. All p-values are Bonferroni corrected. The stars represent significance

following Mann Whitney U tests between distributions (* p<0.05; ** p<0.01; ***

p<0.001; **** p<0.0001). Abbreviations: Mean Microstate Duration (MMD),

Microstate Duration Variance (MDV), milliseconds (ms), Unresponsive Wakefulness

Syndrome (UWS), Minimally Conscious State (MCS), Emergent Minimally

Conscious State (EMCS), Healthy Controls (HC).

When we look into the MMD and MDV separately per each map (Supplementary

Figure 2), we see that the trend is consistent. For map D, we observe a lower

microstate duration especially in the healthy controls as is expected from the lower

RTT values of map D for this group. The higher intra-subject variance in the UWS

patients reflects instability in the duration of the microstates to a higher degree.

Conversely, as HC shows the lowest intra-subject variance, we can state that the

microstates’ duration is more consistent in this group and consistently short as shown

by the mean microstate durations.

In Figure 4 the average transition probabilities going from map X (row) to map Y

(column) are given per group. For the patient groups, we see that more than 90% of
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the transitions are within the same map, rather than transitioning to another map. This

is aligned with the longer durations we observe in the patient groups. In addition, we

observe a decrease in symmetry . This indicates that there are some(𝑃
𝑖𝑗
≠ 𝑃

𝑗𝑖
)

memory effects in the transitions or non-reversible dynamics10,11,21. Another way to

represent the information captured by the transition matrices is entropy production20,21.

The transition matrix entropy production measure per group is given in Figure 4 B

where the Mann-Whitney U two-sided tests show significant differences between the

healthy controls and the patient groups (UWS and HC U(70,37)=496, p<0.0001; MCS

and HC U(70, 37)=447, p<0.0001; EMCS and HC U(14, 37)=90, p=0.001). This

shows that the entropy production is higher in healthy subjects than in patients. This

indicates that the healthy controls microstate transitions are further from an

equilibrium compared to the patient groups.
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Figure 4 The Microstates Transition Matrices (MTM) summarized using the

Entropy productions show differences between Healthy Controls and patients

with Disorders of Consciousness. (A) The Microstates Transition Matrices (MTM)

transitions are shown going from a row value to a column value. The transitions are

given in percent. (B) Entropy productions per group of the transition probabilities.

According to the Mann-Whitney U tests, significant differences were found between

the healthy controls and each of the three patient groups. The stars represent
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significance following Mann Whitney U tests between distributions (* p<0.05; **

p<0.01; *** p<0.001; **** p<0.0001). All values are Bonferroni corrected. In the last

panel, one dot represents one subject. Abbreviations: Unresponsive Wakefulness

Syndrome (UWS), Minimally Conscious State (MCS), Emergent Minimally

Conscious State (EMCS), Healthy Controls (HC).

Discussion

Summary

In this study, we used a pseudo-resting-state EEG analysis aimed to investigate the

temporal characteristics of ongoing spatial patterns. The configuration of scalp

topographies remains semi-stable over successive short-time periods lasting on

average from 50 to 100 milliseconds. These periods of stability are what we call

microstates Four canonical maps and their temporal properties have been

hypothesized to represent the quality of mentation in resting state recordings6.

However, so far, these topographies have been most often analyzed from low-density

EEG recordings. In this study, a high-density (256 electrodes) EEG system was used,

which can capture more detailed topographies. In this case, the maps must be precise

enough to separate functionally different states (for example in UWS and HC), but

also generalizable enough to allow cross-group comparisons6. The k-means clustering

output resulted in maps that can be reliably compared with the canonical maps

typically reported in the literature. A group-level clustering was conducted on all DoC

and HC groups together and two groups of markers were investigated, static (RTT and

GEV) and dynamic (MMD, MDV, TM, and EP). The markers Ratio of Total Time

(RTT) covered, the Global Explained Variance (GEV), and the Mean Microstates

Durations (MMD) derived from the HC microstates segmentation, are comparable

with other studies6,8,19,24,35. We extend the analysis by using metrics that capture

different properties of the distributions such as the Microstate Duration Variance

(MDV) and Entropy Production (EP).
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Static microstate markers do not differ across patient groups

The static markers, which are not dependent on the temporal dynamics of the

microstates, showed no reliable differences among patient group categories (Figure 2).

The low GEV of microstate D could reflect a higher heterogeneity of the topographies

that were assigned to map D. Such a trend is observed By Brodbeck et al.7 but only in

non-REM and deep sleep. Interestingly, map D had similar RTT values in UWS and

MCS to the ones of other maps, and lower in one part of the HC group. Comsa et al.8

findings are aligned with our results, there seems to be a lower entropy, and less

balanced RTT when subjects are awake than when they are asleep.

On the contrary, RTT entropy values in our study differ from those observed in

another work with patients, where the RTT distributions in HC are more balanced, and

less predictable, with a higher entropy; than the UWS and MCS patients18. In another

work on sleep, similarly, there is a decrease in entropy going from awake to deep

sleep, with N2 sleep showing the highest RTT variance between maps (lowest

entropy)7. However, any comparison between sleep and DoC as states of

consciousness has to be taken with precaution because there is mounting evidence that

sleep cannot be studied as a uniquely unconscious state, but rather shows high

heterogeneity36.

Dynamic microstate markers differ across patient groups

When analyzing the MMD, we observed lower group-level values, going from UWS

to MCS, EMCS, and HC. The statistical significance of the Mann-Whitney U

two-sided tests confirmed this observation. The group pairwise Mann-Whitney U test,

after a Bonferroni correction, revealed significant differences between all groups

except for MCS and EMCS (U(70,14)=608, p=0.95). However, due to the unbalanced

sample sizes, the power of the test is limited. Furthermore, the shortening of EEG

microstates in the HC, reveals faster dynamics in fully preserved consciousness in the

healthy controls. This is captured by other studies that investigated EEG microstates

in a smaller sample of DoC patients with an average of around 20 ms lengthening of

the microstates duration19, in drowsy and asleep subjects, with 10 ms MMD

lengthening is asleep compared to awake and attentive participants8, and 50 ms

lengthening in deep sleep compared to wakefulness7. In other words, the microstate
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durations during deep sleep were twice as long compared to when the participants

were awake; and the deeper the subjects were asleep, the slower the topographical

alterations were. Furthermore, the average duration of microstate D was significantly

increased when participants in the study were drowsy or had fallen asleep in

comparison to when they were awake8. A parallel can be drawn between the studies

done on sleep and DoC patients. Sleep, which is a transient loss of consciousness, and

DoC classes which reflect a non-reversible loss of consciousness condition, both show

similar microstate dynamics. This implies that the microstate temporal dynamics

correlate with wakefulness or lack thereof.

Similarly, in the Microstate Duration Variance (MDV) distributions, a lowering of

per-subject variance scores from UWS to HC was observed. The group pairwise

Mann-Whitney U tests, after a Bonferroni correction, revealed significant differences

between all pairs of groups except for MCS and EMCS (U(70,14)=565, p=1) (Figure

3). The initial hypothesis we postulated is that the HC group will show the highest

per-subject variance. The line of thought is that the consciousness level, and thus

inter-subject differences would be reflected in a higher variance of microstate

durations. A variance that should not show up in patient groups. Similar variances

(spread) of the MMD distributions are reported when participants are asleep compared

to when they are awake7,8, especially when comparing deep (N3) sleep compared to

wakefulness7. However, in both studies, the subject-level MDV is not calculated, and

a direct comparison entails further investigation.

When looking into the lower per-subject variance in healthy controls, one could

postulate that the microstates do not reflect inter-subject conscious content, but rather

more general brain dynamics of conscious states. Furthermore, the higher variance in

the patient groups could reflect the high heterogeneity of the etiologies and clinical

pictures across patients. Another possibility is that in the patient groups, the

microstate durations are consistently long, but because we use short epochs, their

durations are interrupted.
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Entropy production is lower in patients compared to healthy

controls

The decrease in symmetrical transitions across states is captured by the measure of

entropy production20,21. On a group level, the differences are significant between the

healthy controls and the three patient groups. This indicates that the microstates time

series in the healthy controls has higher irreversibility, or there is a breaking in

detailed balance. In contrast, the patient groups show entropy production values

aligned with higher time reversibility. In each of the groups, there are a few patients

who show higher state transition asymmetry. Further investigations can test if the

higher entropy production in patients is aligned with a better prognostic20,21. Our

results are aligned with previous observations which report higher entropy production

with an increase in task cognitive demand21 and a decrease in global states of

unconsciousness20. Other analogous metrics have been proposed, where a breaking of

temporal symmetry (analogous to the entropy production) is shown in healthy control

compared to patients with a disorder of consciousness37.

Conclusions

In this study, we explored the dynamics of EEG microstates in patients with disorders

of consciousness (DoC) to understand residual brain activity and the reorganization of

brain networks on a sub-second scale. By analyzing static and dynamic EEG

microstate markers, we aimed to differentiate between healthy controls and DoC

patients and among different DoC groups. Our findings indicate that while static

markers like the Ratio of Total Time covered (RTT) and Global Explained Variance

(GEV) do not distinguish between patient groups, dynamic markers reveal significant

inter-group differences. Specifically, the Mean Microstate Durations (MMD) and

Microstate Duration Variances (MDV) decrease with higher consciousness levels,

whereas non-diagonal transitions in Microstate Transition Matrices (MTM) and

Entropy Production (EP) increase. These results suggest that DoC patients exhibit

slower and more equilibrium-like brain dynamics, reflecting a state closer to

time-reversibility. This study enhances our understanding of brain dynamics in DoC

patients by showing that dynamic EEG microstate metrics are more sensitive in

capturing subtle differences in brain activity among patients with varying levels of
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consciousness, and translates entropy production measures to EEG acquisitions.

Further lines of research can investigate the dynamic EEG microstate markers in

movie watching or active tasks, where the differences across patient groups could be

further enhanced, as expected from fMRI studies in healthy controls21.

Data Availability

The data is not publicly available.

For the analyses, we used open-source software MNE Python and the associated

implementation of the EEG microstates analysis

(https://github.com/wmvanvliet/mne_microstates).
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Supplementary Materials

Supplementary Figure 1 Per-map distributions of the Ratio of Total Time

covered (RTT) and Global Explained Variance (GEV). (A) The RTT covered are

shown separately for all of the different microstates (A, B, C, D). The RTT reflects the

percentage of time the given microstate is dominant over the whole duration of the

data. (B) Same as (A) but for the GEV. The statistic and the p-value of the

Mann-Whitney U two-sided tests for the RTT and the GEV per map are given in

Supplementary Table 1. All values are Bonferroni corrected. One dot represents one

subject. The stars represent significance following Mann Whitney U tests between

distributions (* p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001). Abbreviations:

Ratio of Total Time covered (RTT), Global Explained Variance (GEV), Unresponsive

Wakefulness Syndrome (UWS), Minimally Conscious State (MCS), Emergent

Minimally Conscious State (EMCS), Healthy Controls (HC).
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Supplementary Table 1 Statistics and the p-value of the Mann-Whitney U two-sided tests, Bonferroni corrected,

for the Ratio of Total Time covered (RTT) and the Global Explained Variance (GEV) per group per map. The

values in bold pass the significance threshold of p<0.05. Abbreviations: Ratio of Total Time covered (RTT),

Global Explained Variance (GEV), Unresponsive Wakefulness Syndrome (UWS), Minimally Conscious State

(MCS), Emergent Minimally Conscious State (EMCS), Healthy Controls (HC).

Map Group 1 Group 2
RTT

(statistic, p-value)

GEV

(statistic, p-value)

A UWS MCS U(70,70)=1992, p=0.679 U(70,70)=1833, p=0.122

A UWS EMCS U(70,14)=468, p=1 U(70,14)=423, p=1

A UWS HC U(70,37)=1278, p=1 U(70,37)=1175, p=1

A MCS EMCS U(70,14)=409, p=1 U(70,14)=307, p=0.342

A MCS HC U(70,37)=1124, p=1 U(70,37)=1109, p=1

A EMCS HC U(14,37)=257, p=1 U(14,37)=201, p=1

B UWS MCS U(70,70)=1830, p=0.118 U(70,70)=1733, p=0.034

B UWS EMCS U(70,14)=371, p=1 U(70,14)=392, p=1

B UWS HC U(70,37)=982, p=0.488 U(70,37)=1248, p=1

B MCS EMCS U(70,14)=471, p=1 U(70,14)=428, p=1

B MCS HC U(70,37)=699, p=0.001 U(70,37)=754, p=0.005

B EMCS HC U(14,37)=139, p=0.14 U(14,37)=165, p=0.581

C UWS MCS U(70,70)=2059, p=1 U(70,70)=2273, p=1

C UWS EMCS U(70,14)=456, p=1 U(70,14)=437, p=1

C UWS HC U(70,37)=726, p=0.002 U(70,37)=771, p=0.007

C MCS EMCS U(70,14)=426, p=1 U(70,14)=459, p=1

C MCS HC U(70,37)=396, p<0.0001 U(70,37)=531, p<0.0001

C EMCS HC U(14,37)=82, p=0.002 U(14,37)=104, p=0.013

D UWS MCS U(70,70)=2366, p=1 U(70,70)=2311, p=1

D UWS EMCS U(70,14)=490, p=1 U(70,14)=448, p=1

D UWS HC U(70,37)=1096, p=1 U(70,37)=1227, p=1

D MCS EMCS U(70,14)=470, p=1 U(70,14)=461, p=1

D MCS HC U(70,37)=1105, p=1 U(70,37)=1193, p=1

D EMCS HC U(14,37)=232, p=1 U(14,37)=229, p=1
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Supplementary Figure 2 Per-map distributions of the Mean Microstate

Durations (MMD) and the Microstate Duration Variances (MDV). (A) The MMD

are shown separately for all of the different microstates (A, B, C, D). (B) Same as (A)

but for the MDV. The statistic and the p-value of the Mann-Whitney U two-sided tests

for the MMD and the MDV per map are given in Supplementary Table 2. All values

are Bonferroni corrected. One dot represents one subject. The stars represent

significance following Mann Whitney U tests between distributions (* p<0.05; **

p<0.01; *** p<0.001; **** p<0.0001). Abbreviations: Mean Microstate Duration

(MMD), Microstate Duration Variance (MDV), milliseconds (ms), Unresponsive

Wakefulness Syndrome (UWS), Minimally Conscious State (MCS), Emergent

Minimally Conscious State (EMCS), Healthy Controls (HC).
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Supplementary Table II Statistics and the p-value of the Mann-Whitney U two-sided tests, Bonferroni

corrected, for the Mean Microstate Durations (MMD) and the Microstate Duration Variances (MDV) per group

per map. The values in bold pass the significance threshold of p<0.05. Abbreviations: Mean Microstate Duration

(MMD), Microstate Duration Variance (MDV), milliseconds (ms), Unresponsive Wakefulness Syndrome (UWS),

Minimally Conscious State (MCS), Emergent Minimally Conscious State (EMCS), Healthy Controls (HC).

Map Group 1 Group 2
MMD

(statistic, p-value)

MDV

(statistic, p-value)

A UWS MCS U(70,70)=2092, p=1 U(70,70)=2059, p=1

A UWS EMCS U(70,14)=274, p=0.116 U(70,14)=288, p=0.187

A UWS HC U(70,37)=276, p<0.0001 U(70,37)=280, p<0.0001

A MCS EMCS U(70,14)=328, p=0.631 U(70,14)=363, p=1

A MCS HC U(70,37)=365, p<0.0001 U(70,37)=409, p<0.0001

A EMCS HC U(14,37)=102, p=0.012 U(14,37)=81, p=0.002

B UWS MCS U(70,70)=2253, p=1 U(70,70)=2182, p=1

B UWS EMCS U(70,14)=359, p=1 U(70,14)=357, p=1

B UWS HC U(70,37)=270, p<0.0001 U(70,37)=365, p<0.0001

B MCS EMCS U(70,14)=399, p=1 U(70,14)=411, p=1

B MCS HC U(70,37)=358, p<0.0001 U(70,37)=470, p<0.0001

B EMCS HC U(14,37)=98, p=0.009 U(14,37)=112, p=0.024

C UWS MCS U(70,70)=1550, p=0.002 U(70,70)=1511, p=0.001

C UWS EMCS U(70,14)=248, p=0.045 U(70,14)= 261, p=0.073

C UWS HC U(70,37)=455, p<0.0001 U(70,37)=331, p<0.0001

C MCS EMCS U(70,14)=426, p=1 U(70,14)=449, p=1

C MCS HC U(70,37)=823, p=0.024 U(70,37)=738, p=0.003

C EMCS HC U(14,37)=201, p=1 U(14,37)=168, p=0.673

D UWS MCS U(70,70)=1608, p=0.005 U(70,70)=1427, p=0.0002

D UWS EMCS U(70,14)=314, p=0.422 U(70,14)=312, p=0.398

D UWS HC U(70,37)=156, p<0.0001 U(70,37)=110, p<0.0001

D MCS EMCS U(70,14)=460, p=1 U(70,14)=454, p=0.335

D MCS HC U(70,37)=380, p<0.0001 U(70,37)=409, p<0.0001

D EMCS HC U(14,37)=107, p=0.017 U(14,37)=90, p=0.005
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Supplementary Figure 3 Graphical representation of the 3-level clustering. In the

first level, we set the number of clusters k to 10. This is done on a single subject level.

The 10 resulting maps from the modified k-means clustering are fed to a second-level

clustering where k=4. In this step, we do a bootstrapping due to the unbalanced

sample sizes. We take samples with repetition from each group with a sample number

equal to the largest sample size per group - in our case NEMCS=14. We do this

clustering on the sub-samples 2000 times. Thus we obtain 4 x 2000 maps, which we

give to a 3rd-level clustering where k=4. These last 4 maps are back-fitted to the time

series and thus the segmentation of the microstates is obtained. Abbreviations:

Unresponsive Wakefulness Syndrome (UWS), Minimally Conscious State (MCS),

Emergent Minimally Conscious State (EMCS), Healthy Controls (HC).
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